

Buy. Rent. Access.

Access student data f les and other study
tools on cengagebrain.com.

For detailed instructions visit
http://solutions.cengage.com/ctdownloads/

Store your Data Files on a USB drive for maximum eff ciency in
organizing and working with the f les.

Macintosh users should use a program to expand WinZip or PKZip archives.
Ask your instructor or lab coordinator for assistance.

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

PROGRAMMING LOGIC

AND DESIGN

COMPREHENSIVE VERSION

JOYCE FARRELL

E I G H T H E D I T I O N

Australia Brazil Japan Korea Mexico Singapore Spain United Kingdom United States

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

 This is an electronic version of the print textbook. Due to electronic rights restrictions,
some third party content may be suppressed. Editorial review has deemed that any suppressed
content does not materially affect the overall learning experience. The publisher reserves the right
to remove content from this title at any time if subsequent rights restrictions require it. For
valuable information on pricing, previous editions, changes to current editions, and alternate
formats, please visit www.cengage.com/highered to search by ISBN#, author, title, or keyword for
materials in your areas of interest.

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Programming Logic and Design,
Comprehensive version,
Eighth Edition
Joyce Farrell

Senior Product Manager: Jim Gish

Senior Content Developer: Alyssa Pratt

Development Editor: Dan Seiter

Content Project Manager:
Jennifer Feltri-George

Product Assistant: Gillian Daniels

Senior Market Development Manager:
Eric La Scola

Marketing Manager: Gretchen Swann

Art Director: Cheryl Pearl, GEX
Publishing Services

Text Designer: GEX Publishing Services

Cover Designer: GEX Publishing Services

Image Credit: © Kasia/Shutterstock.com

Manufacturing Planner: Julio Esperas

Copyeditor: Michael Beckett

Proofreader: Lisa Weidenfeld

Indexer: Alexandra Nickerson

Compositor: Integra

© 2015 Cengage Learning.

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein
may be reproduced, transmitted, stored or used in any form or by any means—
graphic, electronic, or mechanical, including but not limited to photocopying,
recording, scanning, digitizing, taping, Web distribution, information networks,
or information storage and retrieval systems, except as permitted under Section
107 or 108 of the 1976 United States Copyright Act—without the prior written
permission of the publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, www.cengage.com/support.

For permission to use material from this text or product,
submit all requests online at cengage.com/permissions.

Further permissions questions can be e-mailed to
permissionrequest@cengage.com.

Library of Congress Control Number: 2013956197

ISBN-13: 978-1-285-77671-2

Cengage Learning
200 First Stamford Place, 4th Floor
Stamford, CT 06902
USA

Cengage Learning is a leading provider of customized learning solutions with
office locations around the globe, including Singapore, the United Kingdom,
Australia, Mexico, Brazil, and Japan. Locate your local office at:
www.cengage.com/global

Cengage Learning products are represented in Canada by
Nelson Education, Ltd.

Purchase any of our products at your local college store or at our preferred
online store: www.cengagebrain.com

Some of the product names and company names used in this book have been
used for identification purposes only and may be trademarks or registered
trademarks of their respective manufacturers and sellers.

Microsoft product screenshots used with permission from Microsoft Corporation.

Unless otherwise credited, all art and tables © 2015 Cengage Learning, produced
by Integra.

Cengage Learning reserves the right to revise this publication and make changes
from time to time in its content without notice.

Printed in the United States of America

1 2 3 4 5 6 7 17 16 15 14 13

WCN: 02-200-203

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Brief Contents

Preface ix

CHAPTER 1 An Overview of Computers and Programming . . 1
CHAPTER 2 Elements of High-Quality Programs 38
CHAPTER 3 Understanding Structure 87
CHAPTER 4 Making Decisions 125
CHAPTER 5 Looping 177
CHAPTER 6 Arrays 226
CHAPTER 7 File Handling and Applications 274
CHAPTER 8 Advanced Data Handling Concepts 321
CHAPTER 9 Advanced Modularization Techniques 371
CHAPTER 10 Object-Oriented Programming 427
CHAPTER 11 More Object-Oriented Programming

Concepts 471
CHAPTER 12 Event-Driven GUI Programming,

Mult ithreading, and Animation 514
CHAPTER 13 System Modeling with the UML 547
CHAPTER 14 Using Relat ional Databases 579
APPENDIX A Understanding Numbering Systems

and Computer Codes 625

APPENDIX B Solving Diff icult Structuring Problems 633

APPENDIX C Creating Print Charts 642

APPENDIX D Two Variations on the Basic Structures—
case and do-while644

Glossary 651

Index 667

iii

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Contents

Preface ix

CHAPTER 1 An Overview of Computers and Programming . . 1

Understanding Computer Systems 2
Understanding Simple Program Logic 5
Understanding the Program Development Cycle 7
Using Pseudocode Statements and Flowchart Symbols 14
Using a Sentinel Value to End a Program 20
Understanding Programming and User Environments 23
Understanding the Evolution of Programming Models 26
Chapter Summary . 28
Key Terms . 28
Exercises . 31

CHAPTER 2 Elements of High-Quality Programs 38

Declaring and Using Variables and Constants 39
Performing Arithmetic Operations 47
Understanding the Advantages of Modularization 51
Modularizing a Program 54
Creating Hierarchy Charts 64
Features of Good Program Design 66
Chapter Summary . 75
Key Terms . 76
Exercises . 79

CHAPTER 3 Understanding Structure 87

The Disadvantages of Unstructured Spaghetti Code 88
Understanding the Three Basic Structures 90
Using a Priming Input to Structure a Program 99
Understanding the Reasons for Structure106
Recognizing Structure .107
Structuring and Modularizing Unstructured Logic110
Chapter Summary .116
Key Terms .116
Exercises .117

iv

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 4 Making Decisions 125

Boolean Expressions and the Selection Structure126
Using Relational Comparison Operators131
Understanding AND Logic135
Understanding OR Logic145
Understanding NOT Logic156
Making Selections within Ranges157
Understanding Precedence When Combining AND and OR

Operators .163
Chapter Summary .166
Key Terms .167
Exercises .168

CHAPTER 5 Looping 177

Understanding the Advantages of Looping178
Using a Loop Control Variable180
Nested Loops .186
Avoiding Common Loop Mistakes192
Using a for Loop .201
Common Loop Applications203
Comparing Selections and Loops213
Chapter Summary .217
Key Terms .217
Exercises .218

CHAPTER 6 Arrays 226

Storing Data in Arrays .227
How an Array Can Replace Nested Decisions230
Using Constants with Arrays239
Searching an Array for an Exact Match241
Using Parallel Arrays .246
Searching an Array for a Range Match253
Remaining within Array Bounds257
Using a for Loop to Process an Array261
Chapter Summary .262
Key Terms .263
Exercises .263

v

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 7 File Handling and Applications 274

Understanding Computer Files275
Understanding the Data Hierarchy277
Performing File Operations279
Understanding Control Break Logic286
Merging Sequential Files292
Master and Transaction File Processing301
Random Access Files .310
Chapter Summary .311
Key Terms .312
Exercises .314

CHAPTER 8 Advanced Data Handling Concepts 321

Understanding the Need for Sorting Data322
Using the Bubble Sort Algorithm323
Sorting Multifield Records342
Using the Insertion Sort Algorithm345
Using Multidimensional Arrays349
Using Indexed Files and Linked Lists356
Chapter Summary .361
Key Terms .362
Exercises .363

CHAPTER 9 Advanced Modularization Techniques 371

The Parts of a Method .372
Using Methods with no Parameters373
Creating Methods that Require Parameters376
Creating Methods that Return a Value384
Passing an Array to a Method391
Overloading Methods .398
Using Predefined Methods405
Method Design Issues: Implementation Hiding,

Cohesion, and Coupling407
Understanding Recursion410
Chapter Summary .415
Key Terms .416
Exercises .418

vi

C O N T E N T S

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 10 Object-Oriented Programming 427

Principles of Object-Oriented Programming428
Defining Classes and Creating Class Diagrams435
Understanding Public and Private Access444
Organizing Classes .448
Understanding Instance Methods449
Understanding Static Methods454
Using Objects .456
Chapter Summary .462
Key Terms .463
Exercises .465

CHAPTER 11 More Object-Oriented Programming
Concepts 471

Understanding Constructors472
Understanding Destructors479
Understanding Composition481
Understanding Inheritance482
An Example of Using Predefined Classes:

Creating GUI Objects494
Understanding Exception Handling495
Reviewing the Advantages of Object-Oriented

Programming .501
Chapter Summary .502
Key Terms .503
Exercises .504

CHAPTER 12 Event-Driven GUI Programming,
Mult ithreading, and Animation 514

Understanding Event-Driven Programming515
User-Initiated Actions and GUI Components518
Designing Graphical User Interfaces521
Developing an Event-Driven Application524
Understanding Threads and Multithreading532
Creating Animation .535
Chapter Summary .538
Key Terms .539
Exercises .540

vii

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 13 System Modeling with the UML 547

Understanding System Modeling548
What is the UML? .549
Using UML Use Case Diagrams551
Using UML Class and Object Diagrams557
Using Other UML Diagrams561
Deciding When to Use the UML and Which UML

Diagrams to Use .569
Chapter Summary .571
Key Terms .572
Exercises .573

CHAPTER 14 Using Relat ional Databases 579

Understanding Relational Database Fundamentals580
Creating Databases and Table Descriptions582
Identifying Primary Keys584
Understanding Database Structure Notation587
Working with Records within Tables588
Creating Queries .589
Understanding Relationships Between Tables592
Recognizing Poor Table Design598
Understanding Anomalies, Normal Forms, and Normalization . . .600
Database Performance and Security Issues609
Chapter Summary .611
Key Terms .613
Exercises .616

APPENDIX A Understanding Numbering Systems
and Computer Codes 625

APPENDIX B Solving Diff icult Structuring Problems 633

APPENDIX C Creating Print Charts 642

APPENDIX D Two Variations on the Basic Structures—
case and do-while 644

Glossary 651

Index . 667

viii

C O N T E N T S

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Preface

Programming Logic and Design, Comprehensive, Eighth Edition provides the beginning
programmer with a guide to developing structured program logic. This textbook assumes no
programming language experience. The writing is nontechnical and emphasizes good
programming practices. The examples are business examples; they do not assume
mathematical background beyond high school business math. Additionally, the examples
illustrate one or two major points; they do not contain so many features that students become
lost following irrelevant and extraneous details.

The examples in this book have been created to provide students with a sound background in
logic, no matter what programming languages they eventually use to write programs. This
book can be used in a stand-alone logic course that students take as a prerequisite to a
programming course, or as a companion book to an introductory programming text using
any programming language.

Organization and Coverage
Programming Logic and Design, Comprehensive, Eighth Edition introduces students to
programming concepts and enforces good style and logical thinking. General
programming concepts are introduced in Chapter 1. Chapter 2 discusses using data and
introduces two important concepts: modularization and creating high-quality programs.
It is important to emphasize these topics early so that students start thinking in a
modular way and concentrate on making their programs efficient, robust, easy to read,
and easy to maintain.

Chapter 3 covers the key concepts of structure, including what structure is, how to recognize
it, and most importantly, the advantages to writing structured programs. This chapter’s
content is unique among programming texts. The early overview of structure presented here
gives students a solid foundation in thinking in a structured way.

Chapters 4, 5, and 6 explore the intricacies of decision making, looping, and array
manipulation. Chapter 7 provides details of file handling so students can create programs that
process a significant amount of data.

In Chapters 8 and 9, students learn more advanced techniques in array manipulation and
modularization. Chapters 10 and 11 provide a thorough yet accessible introduction to
concepts and terminology used in object-oriented programming. Students learn about
classes, objects, instance and static class members, constructors, destructors, inheritance, and
the advantages of object-oriented thinking.

ix

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 12 explores additional object-oriented programming issues: event-driven GUI
programming, multithreading, and animation. Chapter 13 discusses system design issues and
details the features of the Unified Modeling Language. Chapter 14 is a thorough introduction
to important database concepts that business programmers should understand.

Four appendices instruct students in working with numbering systems, large unstructured
programs, print charts, and post-test loops and case structures.

Programming Logic and Design combines text explanation with flowcharts and pseudocode
examples to provide students with alternative means of expressing structured logic.
Numerous detailed, full-program exercises at the end of each chapter illustrate the concepts
explained within the chapter, and reinforce understanding and retention of the material
presented.

Programming Logic and Design distinguishes itself from other programming logic books in
the following ways:

It is written and designed to be non-language specific. The logic used in this book can be
applied to any programming language.

The examples are everyday business examples; no special knowledge of mathematics,
accounting, or other disciplines is assumed.

The concept of structure is covered earlier than in many other texts. Students are
exposed to structure naturally, so they will automatically create properly designed
programs.

Text explanation is interspersed with both flowcharts and pseudocode so students can
become comfortable with these logic development tools and understand their
interrelationship. Screen shots of running programs also are included, providing students
with a clear and concrete image of the programs’ execution.

Complex programs are built through the use of complete business examples. Students see
how an application is constructed from start to finish instead of studying only segments of
programs.

x

P R E F A C E Organization and Coverage

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Features
This text focuses on helping students become better programmers and
understand the big picture in program development through a variety of
key features. In addition to chapter Objectives, Summaries, and Key Terms,
these useful features will help students regardless of their learning style.

THE DON’T DO IT ICON illustrates
how NOT to do something—for
example, having a dead code
path in a program. This icon
provides a visual jolt to the student,

are NOT to be emulated and making
students more careful to recognize
problems in existing code.

and illustrations provide

learning experience.
the reader with a visual

FLOWCHARTS, figures,

xi

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE mini quizzes
appear after each chapter section, with
answers provided. The quiz contains
three statements based on the preceding
section of text—two statements are
true and one is false. Answers give
immediate feedback without “giving away”
answers to the multiple-choice questions
and programming problems later in
the chapter. Students also have the option
to take these quizzes electronically
through the enhanced CourseMate site.

VIDEO LESSONS help
explain important chapter
concepts. Videos are part
of the text’s enhanced
CourseMate site.

NOTES provide
additional information—
for example, another
location in the book that
expands on a topic, or a
common error to watch
out for.

xii

F E A T U R E S

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Assessment

REVIEW QUESTIONS test
student comprehension of the
major ideas and techniques
presented. Twenty questions
follow each chapter.

PROGRAMMING EXERCISES provide
opportunities to practice concepts. These
exercises increase in difficulty and allow
students to explore logical programming
concepts. Each exercise can be
completed using flowcharts, pseudocode,
or both. In addition, instructors can assign
the exercises as programming problems
to be coded and executed in a particular
programming language.

xiii

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

PERFORMING MAINTENANCE
exercises ask students to modify
working logic based on new
requested specifications. This
activity mirrors real-world tasks
that students are likely to
encounter in their first programming
jobs.

DEBUGGING EXERCISES are
included with each chapter because
examining programs critically and
closely is a crucial programming skill.
Students can download these exercises
at www.cengagebrain.com and through
the CourseMate available for this text.
These files are also available to
instructors at sso.cengage.com.

ESSAY QUESTIONS present
personal and ethical issues that
programmers must consider. These
questions can be used for written
assignments or as a starting point
for classroom discussion.

GAME ZONE EXERCISES are included
at the end of each chapter. Students can
create games as an additional entertaining
way to understand key programming
concepts.

xiv

A S S E S S M E N T

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Other Features of the Text
This edition of the text includes many features to help students become better programmers
and understand the big picture in program development.

Clear explanations. The language and explanations in this book have been refined over
eight editions, providing the clearest possible explanations of difficult concepts.

Emphasis on structure. More than its competitors, this book emphasizes structure.
Chapter 3 provides an early picture of the major concepts of structured programming.

Emphasis on modularity. From the second chapter, students are encouraged to write
code in concise, easily manageable, and reusable modules. Instructors have found that
modularization should be encouraged early to instill good habits and a clearer
understanding of structure.

Objectives. Each chapter begins with a list of objectives so the student knows the topics
that will be presented in the chapter. In addition to providing a quick reference to topics
covered, this feature provides a useful study aid.

Chapter summaries. Following each chapter is a summary that recaps the programming
concepts and techniques covered in the chapter.

Key terms. Each chapter lists key terms and their definitions; the list appears in the order
the terms are encountered in the chapter. A glossary at the end of the book lists all the key
terms in alphabetical order, along with working definitions.

CourseMate
The more you study, the better the results. Make the most of your study time by accessing
everything you need to succeed in one place. Read your textbook, review flashcards, watch
videos, and take practice quizzes online. CourseMate goes beyond the book to deliver what
you need! Learn more at www.cengage.com/coursemate.

The Programming Logic and Design CourseMate includes:

Video Lessons. Designed and narrated by the author, videos in each chapter explain and
enrich important concepts.

Two Truths & A Lie, Debugging Exercises, and Performing Maintenance. Complete
popular exercises from the text online.

An interactive eBook. Highlighting and note-taking, flashcards, quizzing, study games,
and more.

Instructors may add CourseMate to the textbook package, or students may purchase
CourseMate directly at www.cengagebrain.com.

Instructor Resources
The following teaching tools are available to the instructor for download through our
Instructor Companion Site at sso.cengage.com.

xv

Instructor Resources

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Electronic Instructor’s Manual. The Instructor’s Manual follows the text chapter by
chapter to assist in planning and organizing an effective, engaging course. The manual
includes learning objectives, chapter overviews, lecture notes, ideas for classroom
activities, and abundant additional resources. A sample course syllabus is also available.

PowerPoint Presentations. This text provides PowerPoint slides to accompany each
chapter. Slides are included to guide classroom presentation, to make available to
students for chapter review, or to print as classroom handouts.

Solutions. Solutions to review questions and exercises are provided to assist with grading.

Test Bank®. Cengage Learning Testing Powered by Cognero is a flexible, online system
that allows you to:

author, edit, and manage test bank content from multiple Cengage Learning solutions

create multiple test versions in an instant

deliver tests from your LMS, your classroom, or anywhere you want

Additional Options
Visual Logic™ software. Visual Logic is a simple but powerful tool for teaching
programming logic and design without traditional high-level programming language
syntax. Visual Logic also interprets and executes flowcharts, providing students with
immediate and accurate feedback.

PAL (Programs to Accompany) Guides. Together with Programming Logic and Design,
these brief books, or PAL Guides, provide an excellent opportunity to learn the
fundamentals of programming while gaining exposure to a programming language. PAL
guides are available for C++, Java, and Visual Basic; please contact your sales rep for more
information on how to add the PAL guides to your course.

Acknowledgments
I would like to thank all of the people who helped to make this book a reality, especially
Dan Seiter, Development Editor; Alyssa Pratt, Senior Content Developer; Jim Gish, Senior
Product Manager; and Jennifer Feltri-George, Content Project Manager. I am grateful to be able
to work with so many fine people who are dedicated to producing quality instructional
materials.

I am indebted to the many reviewers who provided helpful and insightful comments during the
development of this book, including Gail Gehrig, Florida State College at Jacksonville; Yvonne
Leonard, Coastal Carolina Community College; and Meri Winchester, McHenry County College.

Thanks, too, to my husband, Geoff, and our daughters, Andrea and Audrey, for their support.
This book, as were all its previous editions, is dedicated to them.

–Joyce Farrell

xvi

P R E F A C E

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1
An Overview
of Computers
and Programming

In this chapter, you will learn about:

Computer systems

Simple program logic

The steps involved in the program development cycle

Pseudocode statements and flowchart symbols

Using a sentinel value to end a program

Programming and user environments

The evolution of programming models

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Understanding Computer Systems
A computer system is a combination of all the components required to process and store
data using a computer. Every computer system is composed of multiple pieces of hardware
and software.

Hardware is the equipment, or the physical devices, associated with a computer. For
example, keyboards, mice, speakers, and printers are all hardware. The devices are
manufactured differently for computers of varying sizes—for example, large mainframes,
laptops, and very small devices embedded into products such as telephones, cars, and
thermostats. However, the types of operations performed by different-sized computers
are very similar. When you think of a computer, you often think of its physical
components first, but for a computer to be useful, it needs more than devices; a computer
needs to be given instructions. Just as your stereo equipment does not do much until you
provide music, computer hardware needs instructions that control how and when data
items are input, how they are processed, and the form in which they are output or stored.

Software is computer instructions that tell the hardware what to do. Software is
programs, which are instruction sets written by programmers. You can buy prewritten
programs that are stored on a disk or that you download from the Web. For example,
businesses use word-processing and accounting programs, and casual computer users
enjoy programs that play music and games. Alternatively, you can write your own
programs. When you write software instructions, you are programming. This book
focuses on the programming process.

Software can be classified into two broad types:

Application software comprises all the programs you apply to a task, such as word-
processing programs, spreadsheets, payroll and inventory programs, and games. When
you hear people say they have “downloaded an app onto a mobile device,” they are simply
using an abbreviation of application.

System software comprises the programs that you use to manage your computer,
including operating systems such as Windows, Linux, or UNIX for larger computers and
Google Android and Apple iOS for smartphones.

This book focuses on the logic used to write application software programs, although many of
the concepts apply to both types of software.

Together, computer hardware and software accomplish three major operations in most programs:

Input—Data items enter the computer system and are placed in memory, where they can
be processed. Hardware devices that perform input operations include keyboards and
mice. Data items include all the text, numbers, and other raw material that are entered
into and processed by a computer. In business, many of the data items used are facts and
figures about such entities as products, customers, and personnel. However, data can also
include items such as images, sounds, and a user’s mouse or finger-swiping movements.

Processing—Processing data items may involve organizing or sorting them, checking
them for accuracy, or performing calculations with them. The hardware component that
performs these types of tasks is the central processing unit, or CPU. Some devices, such as

2

C H A P T E R 1 An Overview of Computers and Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

tablets and smartphones, usually contain multiple processors. Writing programs that
efficiently use several CPUs requires special techniques.

Output—After data items have been processed, the resulting information usually is sent to
a printer, monitor, or some other output device so people can view, interpret, and use the
results. Programming professionals often use the term data for input items, but use
the term information for data that has been processed and output. Sometimes you place
output on storage devices, such as your hard drive, flash media, or a cloud-based device.
(The cloud refers to devices at remote locations accessed through the Internet.) People
cannot read data directly from these storage devices, but the devices hold information for
later retrieval. When you send output to a storage device, sometimes it is used later as
input for another program.

You write computer instructions in a computer programming language such as Visual Basic,
C#, C++, or Java. Just as some people speak English and others speak Japanese, programmers
write programs in different languages. Some programmers work exclusively in one language,
whereas others know several and use the one that is best suited to the task at hand.

The instructions you write using a programming language are called program code; when
you write instructions, you are coding the program.

Every programming language has rules governing its word usage and punctuation. These
rules are called the language’s syntax. Mistakes in a language’s usage are syntax errors. If you
ask, “How the geet too store do I?” in English, most people can figure out what you probably
mean, even though you have not used proper English syntax—you have mixed up the word
order, misspelled a word, and used an incorrect word. However, computers are not nearly as
smart as most people; in this case, you might as well have asked the computer, “Xpu mxv ort
dod nmcad bf B?” Unless the syntax is perfect, the computer cannot interpret the
programming language instruction at all.

When you write a program, you usually type its instructions using a keyboard. When you type
program instructions, they are stored in computer memory, which is a computer’s
temporary, internal storage. Random access memory, or RAM, is a form of internal, volatile
memory. Programs that are currently running and data items that are currently being used
are stored in RAM for quick access. Internal storage is volatile—its contents are lost when the
computer is turned off or loses power. Usually, you want to be able to retrieve and perhaps
modify the stored instructions later, so you also store them on a permanent storage device,
such as a disk. Permanent storage devices are nonvolatile—that is, their contents are
persistent and are retained even when power is lost. If you have had a power loss while
working on a computer, but were able to recover your work when power was restored, it’s not
because the work was still in RAM. Your system has been configured to automatically save
your work at regular intervals on a nonvolatile storage device—often your hard drive.

After a computer program is typed using programming language statements and stored in
memory, it must be translated to machine language that represents the millions of on/off
circuits within the computer. Your programming language statements are called source
code, and the translated machine language statements are object code.

Each programming language uses a piece of software, called a compiler or an interpreter, to
translate your source code into machine language. Machine language is also called binary

3

Understanding Computer Systems

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

language, and is represented as a series of 0s and 1s. The compiler or interpreter that
translates your code tells you if any programming language component has been used
incorrectly. Syntax errors are relatively easy to locate and correct because your compiler or
interpreter highlights them. If you write a computer program using a language such as C++
but spell one of its words incorrectly or reverse the proper order of two words, the software
lets you know that it found a mistake by displaying an error message as soon as you try to
translate the program.

Although there are differences in how compilers and interpreters work, their basic function is the same—to
translate your programming statements into code the computer can use. When you use a compiler, an entire
program is translated before it can execute; when you use an interpreter, each instruction is translated just
prior to execution. Usually, you do not choose which type of translation to use—it depends on the
programming language. However, there are some languages for which both compilers and interpreters are
available.

After a program’s source code is successfully translated to machine language, the computer
can carry out the program instructions. When instructions are carried out, a program runs,
or executes. In a typical program, some input will be accepted, some processing will occur,
and results will be output.

Besides the popular, comprehensive programming languages such as Java and C++, many programmers
use scripting languages (also called scripting programming languages or script languages) such as
Python, Lua, Perl, and PHP. Scripts written in these languages usually can be typed directly from a keyboard
and are stored as text rather than as binary executable files. Scripting language programs are interpreted
line by line each time the program executes, instead of being stored in a compiled (binary) form. Still, with all
programming languages, each instruction must be translated to machine language before it can execute.

TWO TRUTHS & A LIE

Understanding Computer Systems

In each Two Truths and a Lie section, two of the numbered statements are true, and one
is false. Identify the false statement and explain why it is false.

1. Hardware is the equipment, or the devices, associated with a computer.
Software is computer instructions.

2. The grammar rules of a computer programming language are its syntax.

3. You write programs using machine language, and translation software converts
the statements to a programming language.

. s1 dna s0 si hci h w, egaugnal eni hca mot st ne met at s eht str evnoc
)r et er pr et ni r or eli p moc a dell ac(mar gor p noi t al snart a dna, avaJ r o ci saBl ausi V sa
hcus egaugnal gni mmar gor p a gni su s mar gor p eti r wuoY. 3# si t ne met at s esl af ehT

4

C H A P T E R 1 An Overview of Computers and Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Understanding Simple Program Logic
A program with syntax errors cannot be fully translated and cannot execute. A program with
no syntax errors is translatable and can execute, but it still might contain logical errors and
produce incorrect output as a result. For a program to work properly, you must develop
correct logic; that is, you must write program instructions in a specific sequence, you must
not leave any instructions out, and you must not add extraneous instructions.

Suppose you instruct someone to
make a cake as follows:

Get a bowl
Stir
Add two eggs
Add a gallon of gasoline
Bake at 350 degrees for 45 minutes
Add three cups of flour

The dangerous cake-baking instructions are shown with a Don’t Do It icon. You will see this icon when the
book contains an unrecommended programming practice that is used as an example of what not to do.

Even though the cake-baking instructions use English language syntax correctly, the
instructions are out of sequence, some are missing, and some instructions belong to
procedures other than baking a cake. If you follow these instructions, you will not make an
edible cake, and you may end up with a disaster. Many logical errors are more difficult to
locate than syntax errors—it is easier for you to determine whether eggs is spelled incorrectly
in a recipe than it is for you to tell if there are too many eggs or if they are added too soon.

Just as baking directions can be provided in Mandarin, Urdu, or Spanish, program logic can
be expressed correctly in any number of programming languages. Because this book is not
concerned with a specific language, the programming examples could have been written in
Visual Basic, C++, or Java. For convenience, this book uses instructions written in English!

After you learn French, you automatically know, or can easily figure out, many Spanish words. Similarly, after
you learn one programming language, it is much easier to understand several other languages.

Most simple computer programs include steps that perform input, processing, and output.
Suppose you want to write a computer program to double any number you provide. You can
write the program in a programming language such as Visual Basic or Java, but if you were to
write it using English-like statements, it would look like this:

input myNumber
set myAnswer = myNumber * 2
output myAnswer

Don’t Do It
Don't bake a cake like
this!

5

Understanding Simple Program Logic

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The number-doubling process includes three instructions:

The instruction to input myNumber is an example of an input operation. When the
computer interprets this instruction, it knows to look to an input device to obtain a
number. When you work in a specific programming language, you write instructions that
tell the computer which device to access for input. For example, when a user enters a
number as data for a program, the user might click on the number with a mouse, type it
from a keyboard, or speak it into a microphone. Logically, however, it doesn’t matter
which hardware device is used, as long as the computer knows to accept a number. When
the number is retrieved from an input device, it is placed in the computer’s memory in a
variable named myNumber. A variable is a named memory location whose value can vary—
for example, the value of myNumber might be 3 when the program is used for the first time
and 45 when it is used the next time. In this book, variable names will not contain
embedded spaces; for example, the book will use myNumber instead of my Number.

From a logical perspective, when you input, process, or output a value, the hardware device is irrelevant. The
same is true in your daily life. If you follow the instruction “Get eggs for the cake,” it does not really matter if
you purchase them from a store or harvest them from your own chickens—you get the eggs either way.
There might be different practical considerations to getting the eggs, just as there are for getting data from
a large database as opposed to getting data from an inexperienced user working at home on a laptop
computer. For now, this book is only concerned with the logic of operations, not the minor details.

A college classroom is similar to a named variable in that its name (perhaps 204 Adams Building) can hold
different contents at different times. For example, your Logic class might meet there on Monday night, and a
math class might meet there on Tuesday morning.

The instruction set myAnswer = myNumber * 2 is an example of a processing operation.
In most programming languages, an asterisk is used to indicate multiplication, so this
instruction means “Change the value of the memory location myAnswer to equal the value
at the memory location myNumber times two.” Mathematical operations are not the only
kind of processing operations, but they are very typical. As with input operations, the type
of hardware used for processing is irrelevant—after you write a program, it can be used on
computers of different brand names, sizes, and speeds.

In the number-doubling program, the output myAnswer instruction is an example of an
output operation. Within a particular program, this statement could cause the output to
appear on the monitor (which might be a flat-panel plasma screen or a smartphone display),
or the output could go to a printer (which could be laser or ink-jet), or the output could be
written to a disk or DVD. The logic of the output process is the same no matter what hardware
device you use. When this instruction executes, the value stored in memory at the location
named myAnswer is sent to an output device. (The output value also remains in computer
memory until something else is stored at the same memory location or power is lost.)

Watch the video A Simple Program.

6

C H A P T E R 1 An Overview of Computers and Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Computer memory consists of millions of numbered locations where data can be stored. The memory
location of myNumber has a specific numeric address, but when you write programs, you seldom need to
be concerned with the value of the memory address; instead, you use the easy-to-remember name you
created. Computer programmers often refer to memory addresses using hexadecimal notation, or base 16.
Using this system, they might use a value like 42FF01A to refer to a memory address. Despite the use of
letters, such an address is still a hexadecimal number. Appendix A contains information on this numbering
system.

TWO TRUTHS & A LIE

Understanding Simple Program Logic

1. A program with syntax errors can execute but might produce incorrect results.

2. Although the syntax of programming languages differs, the same program logic
can be expressed in different languages.

3. Most simple computer programs include steps that perform input, processing,
and output.

. stl user t cerr ocni ecudor pt hgi mt ub, et ucexe nac sr orr e xat nys on hti w
mar gor p a; et ucexet onnac sr orr e xat nys hti w mar gor p A. 1# si t ne met at s esl af ehT

Understanding the Program Development Cycle
A programmer’s job involves writing instructions (such as those in the doubling program in
the preceding section), but a professional programmer usually does not just sit down at a
computer keyboard and start typing. Figure 1-1 illustrates the program development cycle,
which can be broken down into at least seven steps:

1. Understand the problem.

2. Plan the logic.

3. Code the program.

4. Use software (a compiler or interpreter) to translate the program into machine
language.

5. Test the program.

6. Put the program into production.

7. Maintain the program.

7

Understanding the Program Development Cycle

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Understanding the Problem
Professional computer programmers write programs to satisfy the needs of others, called
users or end users. Examples of end users include a Human Resources department that
needs a printed list of all employees, a Billing department that wants a list of clients who are
30 or more days overdue on their payments, and an Order department that needs a Web site
to provide buyers with an online shopping cart. Because programmers are providing a service
to these users, programmers must first understand what the users want. When a program
runs, you usually think of the logic as a cycle of input-processing-output operations, but when
you plan a program, you think of the output first. After you understand what the desired
result is, you can plan the input and processing steps to achieve it.

Suppose the director of Human Resources says to a programmer, “Our department needs a
list of all employees who have been here over five years, because we want to invite them to a
special thank-you dinner.” On the surface, this seems like a simple request. An experienced
programmer, however, will know that the request is incomplete. For example, you might not
know the answers to the following questions about which employees to include:

Does the director want a list of full-time employees only, or a list of full- and part-time
employees together?

Does she want to include people who have worked for the company on a month-to-
month contractual basis over the past five years, or only regular, permanent employees?

Do the listed employees need to have worked for the organization for five years as of
today, as of the date of the dinner, or as of some other cutoff date?

What about an employee who worked three years, took a two-year leave of absence, and
has been back for three years?

Understand
the problem

Test the
program

Put the program
into production

Maintain the
program

Plan the
logic

Translate the
code

Write the
code

Figure 1-1 The program development cycle
© 2015 Cengage Learning

8

C H A P T E R 1 An Overview of Computers and Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The programmer cannot make any of these decisions; the user (in this case, the Human
Resources director) must address these questions.

More decisions still might be required. For example:

What data should be included for each listed employee? Should the list contain both first
and last names? Social Security numbers? Phone numbers? Addresses?

Should the list be in alphabetical order? Employee ID number order? Length-of-service
order? Some other order?

Should the employees be grouped by any criteria, such as department number or years of
service?

Several pieces of documentation are often provided to help the programmer understand the
problem. Documentation consists of all the supporting paperwork for a program; it might
include items such as original requests for the program from users, sample output, and
descriptions of the data items available for input.

Understanding the problem might be even more difficult if you are writing an app that you
hope to market for mobile devices. Business developers are usually approached by a user with
a need, but successful developers of mobile apps often try to identify needs that users aren’t
even aware of yet. For example, no one knew they wanted to play Angry Birds or leave
messages on Facebook before those applications were developed. Mobile app developers also
must consider a wider variety of user skills than programmers who develop applications that
are used internally in a corporation. Mobile app developers must make sure their programs
work with a range of screen sizes and hardware specifications because software competition is
intense and the hardware changes quickly.

Fully understanding the problem may be one of the most difficult aspects of programming.
On any job, the description of what the user needs may be vague—worse yet, users may not
really know what they want, and users who think they know frequently change their minds
after seeing sample output. A good programmer is often part counselor, part detective!

Watch the video The Program Development Cycle, Part 1.

Planning the Logic
The heart of the programming process lies in planning the program’s logic. During this phase
of the process, the programmer plans the steps of the program, deciding what steps to include
and how to order them. You can plan the solution to a problem in many ways. The two most
common planning tools are flowcharts and pseudocode. Both tools involve writing the steps
of the program in English, much as you would plan a trip on paper before getting into the car
or plan a party theme before shopping for food and favors.

You may hear programmers refer to planning a program as “developing an algorithm.” An
algorithm is the sequence of steps or rules you follow to solve a problem.

9

Understanding the Program Development Cycle

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

